How do I calculate an intermediate quaternion between two quaternions using a ratio parameter?
I’m working with quaternions that represent rotations, and I need to find an intermediate quaternion q3 between two quaternions q1 and q2 based on a ratio parameter (a float between 0 and 1).
I initially tried a naive linear interpolation approach:
q3 = {
q1[0] + (q2[0] - q1[0])*ratio,
q1[1] + (q2[1] - q1[1])*ratio,
q1[2] + (q2[2] - q1[2])*ratio,
q1[3] + (q2[3] - q1[3])*ratio,
};
Then I tried using SLERP (Spherical Linear Interpolation):
vec4 quaternionSlerp(vec4 q1, vec4 q2, float t)
{
// Based on http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/index.htm
float cosHalfTheta = q1[3]*q2[3] + q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2];
// if q1=q2 or q1=-q2 then theta = 0 and we can return q1
if (std::fabs(cosHalfTheta) >= 1.0F) {
return q1;
}
float halfTheta = std::acos(cosHalfTheta);
float sinHalfTheta = std::sqrt(1.0F - cosHalfTheta*cosHalfTheta);
// If theta = 180 degrees then result is not fully defined
// We could rotate around any axis normal to q1 or q2
if (std::fabs(sinHalfTheta) < 1e-4F) {
return {
q1[0] * 0.5F + q2[0] * 0.5F,
q1[1] * 0.5F + q2[1] * 0.5F,
q1[2] * 0.5F + q2[2] * 0.5F,
q1[3] * 0.5F + q2[3] * 0.5F
};
}
else {
// Default quaternion calculation
float ratioA = std::sin((1.0F - t) * halfTheta) / sinHalfTheta;
float ratioB = std::sin(t * halfTheta) / sinHalfTheta;
return {
q1[0] * ratioA + q2[0] * ratioB,
q1[1] * ratioA + q2[1] * ratioB,
q1[2] * ratioA + q2[2] * ratioB,
q1[3] * ratioA + q2[3] * ratioB
};
}
}
I also tried using quaternion multiplication and conjugation:
vec4 multiplyQuaternions(vec4 q1, vec4 q2)
{
float w1 = q1[3], x1 = q1[0], y1 = q1[1], z1 = q1[2];
float w2 = q2[3], x2 = q2[0], y2 = q2[1], z2 = q2[2];
return {
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2, // X
w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2, // Y
w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2, // Z
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2 // W
};
}
vec4 intermediateQuaternion(vec4 q1, vec4 q2, float ratio)
{
float cosHalfTheta = q1[3]*q2[3] + q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2];
float halfTheta = std::acos(cosHalfTheta);
float sinHalfTheta = std::sqrt(1.0F - cosHalfTheta*cosHalfTheta);
ratio = std::sin(ratio * halfTheta) / sinHalfTheta;
vec4 qDifference = multiplyQuaternions(q1, { -q2[0], -q2[1], -q2[2], q2[3] });
return multiplyQuaternions(q1, { qDifference[0]*ratio, qDifference[1]*ratio, qDifference[2]*ratio, qDifference[3]*ratio });
}
None of these approaches seem to produce the desired result. What is the correct way to calculate an intermediate quaternion between two quaternions using a ratio parameter?
How to Calculate an Intermediate Quaternion Between Two Quaternions Using a Ratio Parameter
Brief Answer:
The correct way to calculate an intermediate quaternion between two quaternions using a ratio parameter is to use Spherical Linear Interpolation (SLERP). Unlike naive linear interpolation which doesn’t maintain the unit quaternion property, SLERP provides constant angular velocity and shortest path interpolation. Your SLERP implementation is mostly correct but needs to handle the shortest path by negating one quaternion when the dot product is negative, ensuring you take the shortest rotational path.
Contents
- Understanding Quaternion Interpolation
- Proper SLERP Implementation
- Common Issues and Solutions
- Alternative Interpolation Methods
- Practical Example and Code
- Applications and Use Cases
Understanding Quaternion Interpolation
Quaternions represent rotations in 3D space, and interpolating between them requires special consideration because they exist on a 4D unit sphere. Unlike simple vectors, quaternions have specific mathematical properties that must be preserved during interpolation.
Why Linear Interpolation Doesn’t Work
Your first approach using linear interpolation:
q3 = {
q1[0] + (q2[0] - q1[0])*ratio,
q1[1] + (q2[1] - q1[1])*ratio,
q1[2] + (q2[2] - q1[2])*ratio,
q1[3] + (q2[3] - q1[3])*ratio,
};
This approach has two major issues:
- It doesn’t preserve the unit length property of quaternions
- It doesn’t provide constant angular velocity, resulting in uneven motion
The interpolated quaternion would need to be renormalized, and even then, the motion wouldn’t be smooth in terms of angular velocity.
The Geometry of Quaternion Space
Quaternions representing rotations lie on a 4D hypersphere. To interpolate between two points on this hypersphere with constant angular velocity, we need to follow the great arc connecting them - this is exactly what SLERP does.
Proper SLERP Implementation
Your SLERP implementation is close to correct but missing one crucial element: ensuring the shortest path. Here’s a complete implementation:
vec4 quaternionSlerp(vec4 q1, vec4 q2, float t)
{
// Ensure quaternions are normalized
q1 = normalize(q1);
q2 = normalize(q2);
// Calculate cosine of angle between quaternions
float cosTheta = q1[3]*q2[3] + q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2];
// If quaternions are very close, use linear interpolation to avoid division by small numbers
if (cosTheta > 0.9995f) {
float inv_t = 1.0f - t;
return normalize({
q1[0] * inv_t + q2[0] * t,
q1[1] * inv_t + q2[1] * t,
q1[2] * inv_t + q2[2] * t,
q1[3] * inv_t + q2[3] * t
});
}
// Ensure we take the shortest path
if (cosTheta < 0.0f) {
q2 = {-q2[0], -q2[1], -q2[2], -q2[3]};
cosTheta = -cosTheta;
}
// Calculate interpolation parameters
float theta = acos(cosTheta);
float sinTheta = sin(theta);
float w1 = sin((1.0f - t) * theta) / sinTheta;
float w2 = sin(t * theta) / sinTheta;
// Interpolate
return {
q1[0] * w1 + q2[0] * w2,
q1[1] * w1 + q2[1] * w2,
q1[2] * w1 + q2[2] * w2,
q1[3] * w1 + q2[3] * w2
};
}
The key addition is the check for negative dot product, which allows us to take the shortest rotational path by negating one quaternion when necessary.
Common Issues and Solutions
Issue 1: Not Handling the Shortest Path
When the dot product between two quaternions is negative, it means the angle between them is greater than 180 degrees. In this case, you should negate one quaternion to ensure you’re taking the shortest rotational path.
Issue 2: Quaternion Normalization
Quaternions must be unit quaternions to represent valid rotations. Always normalize your quaternions before interpolation.
Issue 3: Numerical Stability
When the angle between quaternions is very small (or zero), the SLERP formula can become numerically unstable. In these cases, linear interpolation with normalization (NLERP) is a better choice.
Issue 4: Extrapolation Beyond [0,1]
Your ratio parameter should typically be between 0 and 1. If you need to extrapolate beyond this range, note that the behavior may not be what you expect.
Alternative Interpolation Methods
Normalized Linear Interpolation (NLERP)
For performance-critical applications where perfect constant velocity isn’t essential, you can use NLERP:
vec4 quaternionNlerp(vec4 q1, vec4 q2, float t)
{
// Ensure shortest path
float dot = q1[3]*q2[3] + q1[0]*q2[0] + q1[1]*q2[1] + q1[2]*q2[2];
if (dot < 0.0f) {
q2 = {-q2[0], -q2[1], -q2[2], -q2[3]};
}
// Linear interpolation
vec4 result = {
q1[0] * (1.0f - t) + q2[0] * t,
q1[1] * (1.0f - t) + q2[1] * t,
q1[2] * (1.0f - t) + q2[2] * t,
q1[3] * (1.0f - t) + q2[3] * t
};
// Normalize result
return normalize(result);
}
Spherical Cubic Interpolation (SCERP)
For interpolating through multiple quaternions with smooth transitions, you can use SCERP, which builds upon SLERP.
Squad (Spherical Quadrangle Interpolation)
For more complex interpolation curves through multiple control points, Squad provides smooth transitions between SLERP segments.
Practical Example and Code
Here’s a complete example showing how to use SLERP for rotation interpolation:
#include <cmath>
#include <array>
// Quaternion structure
struct Quaternion {
float x, y, z, w;
};
// Normalize a quaternion
Quaternion normalize(Quaternion q) {
float length = sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
if (length == 0.0f) return {0, 0, 0, 1}; // Return identity quaternion if length is zero
return {q.x/length, q.y/length, q.z/length, q.w/length};
}
// SLERP implementation
Quaternion quaternionSlerp(Quaternion q1, Quaternion q2, float t) {
// Ensure quaternions are normalized
q1 = normalize(q1);
q2 = normalize(q2);
// Calculate cosine of angle between quaternions
float cosTheta = q1.w*q2.w + q1.x*q2.x + q1.y*q2.y + q1.z*q2.z;
// If quaternions are very close, use linear interpolation
if (cosTheta > 0.9995f) {
float inv_t = 1.0f - t;
return normalize({
q1.x * inv_t + q2.x * t,
q1.y * inv_t + q2.y * t,
q1.z * inv_t + q2.z * t,
q1.w * inv_t + q2.w * t
});
}
// Ensure we take the shortest path
if (cosTheta < 0.0f) {
q2 = {-q2.x, -q2.y, -q2.z, -q2.w};
cosTheta = -cosTheta;
}
// Calculate interpolation parameters
float theta = acos(cosTheta);
float sinTheta = sin(theta);
float w1 = sin((1.0f - t) * theta) / sinTheta;
float w2 = sin(t * theta) / sinTheta;
// Interpolate
return {
q1.x * w1 + q2.x * w2,
q1.y * w1 + q2.y * w2,
q1.z * w1 + q2.z * w2,
q1.w * w1 + q2.w * w2
};
}
// Example usage
void exampleUsage() {
// Create two quaternions representing rotations
Quaternion q1 = {0.0f, 0.0f, 0.0f, 1.0f}; // Identity quaternion (no rotation)
Quaternion q2 = {0.0f, 0.7071f, 0.0f, 0.7071f}; // 90-degree rotation around Y axis
// Interpolate between them with ratio = 0.5
Quaternion intermediate = quaternionSlerp(q1, q2, 0.5f);
// intermediate now represents a 45-degree rotation around Y axis
}
Applications and Use Cases
Quaternion interpolation is widely used in:
- Computer Animation: Smoothly rotating objects between keyframes
- Game Development: Character animations, camera movements, and object rotations
- Robotics: Smooth joint movements and orientation control
- Flight Simulation: Smooth aircraft orientation changes
- Virtual Reality: Smooth viewpoint transitions and object manipulations
The choice between SLERP, NLERP, or other interpolation methods depends on your specific requirements for smoothness, performance, and accuracy.
Conclusion
- SLERP is the correct method for interpolating between quaternions with constant angular velocity and maintaining the shortest rotational path.
- Always normalize your quaternions before interpolation to ensure they remain valid rotation representations.
- Check for negative dot products and negate one quaternion when necessary to ensure you’re taking the shortest path.
- Consider NLERP for performance-critical applications where perfect constant velocity isn’t essential.
- Handle edge cases where quaternions are nearly identical to avoid numerical instability.
If your current SLERP implementation isn’t producing the desired results, double-check that you’re handling the shortest path correctly and that your quaternions are properly normalized before interpolation.