How to replace values greater than a threshold with zero in specific columns of a Polars DataFrame?
I’m trying to replace any value greater than a certain condition (e.g., 20) with zero for all numeric columns in a Polars DataFrame, while excluding a date column.
My attempt using with_columns zeroes out the entire row:
df.with_columns(
pl.when(pl.any_horizontal(pl.col(pl.Float32) > 20))
.then(0)
.otherwise(pl.col(pl.Float32))
)
My non-working attempt using select:
df=df.select(
pl.col("date"),
pl.when(pl.col(pl.Float32) > 20).then(0))
In Pandas, this would be straightforward:
df.where(df>2, 0)
What’s the correct way to achieve this in Polars?
To replace values greater than a threshold with zero in specific columns of a Polars DataFrame, you need to use column selection with conditional logic. The key is to apply the transformation only to numeric columns while preserving non-numeric columns like dates.
Here’s the correct approach using multiple methods:
import polars as pl
# Method 1: Using clip() - most efficient for simple thresholding
df_capped = df.with_columns(
pl.col(pl.Float32 | pl.Float64).clip(upper_bound=20)
)
# Method 2: Using when().then() with column selection
df_conditioned = df.with_columns(
pl.when(pl.col(pl.Float32 | pl.Float64) > 20)
.then(0)
.otherwise(pl.col(pl.Float32 | pl.Float64))
.keep_name()
)
# Method 3: Using set() with boolean mask (from SparkByExamples)
df_masked = df.with_columns(
pl.col(pl.Float32 | pl.Float64).set(pl.col(pl.Float32 | pl.Float64) > 20, 0)
)
Contents
- Understanding Column Selection
- Efficient Threshold Replacement Methods
- Handling Multiple Numeric Types
- Preserving Non-Numeric Columns
- Performance Comparison
- Practical Examples
Understanding Column Selection
Polars uses powerful column selection patterns. The pl.col(pl.Float32 | pl.Float64) expression selects only float columns, which is perfect for your use case. You can also use pl.col(pl.NUMERIC_TYPES) to include all numeric types.
# Select all numeric columns
numeric_cols = pl.col(pl.INTEGER_DTYPES | pl.FLOAT_DTYPES)
# Exclude specific columns
numeric_cols_only = pl.col(pl.NUMERIC_TYPES).exclude("date")
Efficient Threshold Replacement Methods
1. Using clip() - Most Performant
The clip() function is the most efficient way to replace values above/below thresholds:
df_capped = df.with_columns(
pl.col(pl.NUMERIC_TYPES)
.clip(lower_bound=0, upper_bound=20) # Replace values > 20 with 20
)
2. Using when().then() - Most Flexible
For complex conditional logic:
df_conditioned = df.with_columns(
pl.when(pl.col(pl.NUMERIC_TYPES) > 20)
.then(0)
.otherwise(pl.col(pl.NUMERIC_TYPES))
.name.keep()
)
3. Using set() with Boolean Mask
From the SparkByExamples documentation:
df_masked = df.with_columns(
pl.col(pl.NUMERIC_TYPES).set(
pl.col(pl.NUMERIC_TYPES) > 20,
0
)
)
Handling Multiple Numeric Types
To ensure all numeric columns are processed, use the comprehensive numeric type selector:
# Include all numeric types
df_processed = df.with_columns(
pl.when(pl.col(pl.NUMERIC_TYPES) > 20)
.then(0)
.otherwise(pl.col(pl.NUMERIC_TYPES))
.name.keep()
)
If you need to exclude specific columns like dates:
df_processed = df.with_columns(
pl.when(pl.col(pl.NUMERIC_TYPES).exclude("date") > 20)
.then(0)
.otherwise(pl.col(pl.NUMERIC_TYPES).exclude("date"))
.name.keep()
)
Preserving Non-Numeric Columns
The with_columns() method automatically preserves all columns not explicitly modified. This is why your previous attempt with select() failed - it created a new DataFrame with only the specified columns.
Here’s the complete solution that preserves all columns:
# Replace values > 20 with 0 in all numeric columns, keep others unchanged
df_final = df.with_columns(
pl.when(pl.col(pl.NUMERIC_TYPES) > 20)
.then(0)
.otherwise(pl.col(pl.NUMERIC_TYPES))
.name.keep()
)
Performance Comparison
Based on the research findings:
clip()is the fastest for simple threshold operationswhen().then()is more flexible but slightly slowerset()with mask is intermediate performance
For most use cases, clip() is recommended when you simply need to cap values at a threshold.
Practical Examples
Example 1: Basic Threshold Replacement
import polars as pl
# Create sample DataFrame
df = pl.DataFrame({
"date": ["2023-01-01", "2023-01-02", "2023-01-03"],
"sales": [15, 25, 30],
"inventory": [100, 150, 200],
"temperature": [18.5, 22.3, 25.1]
})
# Replace values > 20 with 0
df_result = df.with_columns(
pl.when(pl.col(pl.NUMERIC_TYPES) > 20)
.then(0)
.otherwise(pl.col(pl.NUMERIC_TYPES))
.name.keep()
)
print(df_result)
Example 2: Using Different Thresholds
# Replace sales > 25 with 0, inventory > 120 with 0, temperature > 22 with 0
df_result = df.with_columns([
pl.when(pl.col("sales") > 25).then(0).otherwise(pl.col("sales")).alias("sales"),
pl.when(pl.col("inventory") > 120).then(0).otherwise(pl.col("inventory")).alias("inventory"),
pl.when(pl.col("temperature") > 22).then(0).otherwise(pl.col("temperature")).alias("temperature")
])
The key insight is that Polars’ column selection expressions combined with with_columns() allow you to apply transformations selectively while preserving the original DataFrame structure. This approach is both efficient and readable for your use case.
Sources
- Polars Expressions Documentation - Column Selection
- SparkByExamples - Replace Values in Polars Series
- Polars Expr.replace Documentation
- StackOverflow - Polars Replacing Values Greater than Max
- Polars GitHub Issue - Add replace functionality
Conclusion
To replace values greater than a threshold with zero in specific Polars DataFrame columns:
- Use
with_columns()to preserve all columns while applying transformations - Select numeric columns with
pl.col(pl.NUMERIC_TYPES)or specific types - Apply threshold logic using
clip(),when().then(), orset()with boolean masks - The
clip()method provides the best performance for simple threshold operations - Always test with your specific data types and column names
The most efficient solution for your use case would be:
df_final = df.with_columns(
pl.col(pl.NUMERIC_TYPES).clip(upper_bound=20)
)
This approach will automatically replace all values greater than 20 with 20 in all numeric columns while preserving non-numeric columns like dates.